987 research outputs found

    Whole-fat or reduced-fat dairy product intake, adiposity, and cardiometabolic health in children: A systematic review

    Get PDF
    Dietary guidelines commonly recommend that children aged \u3e2 y consume reduced-fat dairy products rather than regular- or whole-fat dairy. In adults, most studies have not found the consumption of whole-fat dairy products to be associated with increased cardiometabolic or adiposity risk. Associations in children could differ due to growth and development. We systematically reviewed the literature in indexed, peer-reviewed journals to summarize pediatric studies (children aged from 2 to 18 y) assessing associations between whole- and reduced-fat dairy intake and measures of adiposity as well as biomarkers of cardiometabolic disease risk, including the serum lipid profile, blood pressure, low-grade chronic inflammation, oxidative stress, and measures of glucose homeostasis. For the purposes of this review, a “whole-fat” dairy product was defined as a product with the natural fat content, whereas a “reduced-fat” dairy product was defined as a product with some or all of the fat removed (including “low-fat” and “skim” versions). A total of 29 journal articles met our criteria for inclusion. The majority were conducted in the United States and were prospective or cross-sectional observational studies, with only 1 randomized controlled trial. Studies were consistent in reporting that whole-fat dairy products were not associated with increased measures of weight gain or adiposity. Most evidence indicated that consumption of whole-fat dairy was not associated with increased cardiometabolic risk, although a change from whole-fat to reduced-fat dairy improved outcomes for some risk factors in 1 study. Taken as a whole, the limited literature in this field is not consistent with dietary guidelines recommending that children consume preferably reduced-fat dairy products. High-quality randomized controlled trials in children that directly compare the effects of whole-fat compared with reduced-fat dairy intake on measures of adiposity or biomarkers of cardiometabolic disease risk are needed to provide better quality evidence in this area

    On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios

    Get PDF
    Recent improvements in stellar models for intermediate-mass and massive stars are recalled, together with their expectations for the synthesis of radioactive nuclei of lifetime τâ‰Č25\tau \lesssim 25 Myr, in order to re-examine the origins of now extinct radioactivities, which were alive in the solar nebula. The Galactic inheritance broadly explains most of them, especially if rr-process nuclei are produced by neutron star merging according to recent models. Instead, 26^{26}Al, 41^{41}Ca, 135^{135}Cs and possibly 60^{60}Fe require nucleosynthesis events close to the solar formation. We outline the persisting difficulties to account for these nuclei by Intermediate Mass Stars (2 â‰Č\lesssim M/M⊙â‰Č7−8_\odot \lesssim 7 - 8). Models of their final stages now predict the ubiquitous formation of a 13^{13}C reservoir as a neutron capture source; hence, even in presence of 26^{26}Al production from Deep Mixing or Hot Bottom Burning, the ratio 26^{26}Al/107^{107}Pd remains incompatible with measured data, with a large excess in 107^{107}Pd. This is shown for two recent approaches to Deep Mixing. Even a late contamination by a Massive Star meets problems. In fact, inhomogeneous addition of Supernova debris predicts non-measured excesses on stable isotopes. Revisions invoking specific low-mass supernovae and/or the sequential contamination of the pre-solar molecular cloud might be affected by similar problems, although our conclusions here are weakened by our schematic approach to the addition of SN ejecta. The limited parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap

    Cardiovascular risk protection from the Mediterranean diet and olive oil. A transcriptomic update in humans

    Get PDF
    This review highlights the human studies that explore the benefits of the Mediterranean diet and olive oil, based on gene expression analysis. We summarized consistent human transcriptomic studies on cardiovascular risk, based on TMD and olive oil interventions, with real life doses and conditions. A literature review was carried out leading up to February 2016. The results show that the TMD, specially supplemented with virgin olive oil, produces beneficial changes in the transcriptomic response of relevant genes in cardiovascular risk such as CAT, GPX1 and SIRT2. p65 and MCP-1, IL1B, IL6, CXCL1, INF-γ, ARHGAP15 and IL7R, which are involved in inflammation; and ABCA1, SR-B1, PPARBP, PPARα, PPARγ, PPARΎ, CD-36 and COX-1, which play an important role in cholesterol efflux. The available data illustrate a transcriptomic effect on atherosclerosis, inflammation and oxidative stress pathways as well as the mentioned genes

    Half Life of the Doubly-magic r-Process Nucleus 78Ni

    Full text link
    Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r-process). 78Ni is the only doubly-magic nucleus that is also an important waiting point in the r-process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110 (+100 -60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128 (+27 -33) ms, and more precise half-lives were deduced for 75Ni and 76Ni of 344 (+20 -24) ms and 238 (+15 -18) ms respectively.Comment: 4 pages, 3 figure

    New attempts to understand nanodiamond stardust

    Get PDF
    We report on a concerted effort aimed at understanding the origin and history of the pre-solar nanodiamonds in meteorites including the astrophysical sources of the observed isotopic abundance signatures. This includes measurement of light elements by secondary ion mass spectrometry (SIMS), analysis of additional heavy trace elements by accelerator mass spectrometry (AMS) and dynamic calculations of r-process nucleosynthesis with updated nuclear properties. Results obtained indicate: a) there is no evidence for the former presence of now extinct 26Al and 44Ti in our diamond samples other than what can be attributed to silicon carbide and other "impurities"; this does not offer support for a supernova (SN) origin but neither does it negate it; b) analysis by AMS of platinum in "bulk diamond" yields an overabundance of r-only 198Pt that at face value seems more consistent with the neutron burst than with the separation model for the origin of heavy trace elements in the diamonds, although this conclusion is not firm given analytical uncertainties; c) if the Xe-H pattern was established by an unadulterated r-process, it must have been a strong variant of the main r-process, which possibly could also account for the new observations in platinum.Comment: Workshop on Astronomy with Radioactvities VII; Publications of the Astronomical Society of Australia, accepte

    Beta-decay half-lives and beta-delayed neutron emission probabilities of nuclei in the region below A=110, relevant for the r-process

    Full text link
    Measurements of the beta-decay properties of r-process nuclei below A=110 have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. Beta-decay half-lives for Y-105, Zr-106,107 and Mo-111, along with beta-delayed neutron emission probabilities of Y-104, Mo-109,110 and upper limits for Y-105, Zr-103,104,105,106,107 and Mo-108,111 have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.Comment: 21 pages, 10 figures, article accepted for publication in Physical Review

    Whole fat dairy products do not adversely affect adiposity or cardiometabolic risk factors inchildren in the Milky Way study: A double blind randomized controlled pilot study

    Get PDF
    Background Limited evidence supports the common public health guideline that children \u3e 2 y of age should consume dairy with reduced fat content. Objectives We aimed to investigate the effects of whole-fat compared with reduced-fat dairy intake on measures of adiposity and biomarkers of cardiometabolic risk in healthy 4- to 6-y-old children. Methods The Milky Way Study enrolled 49 children (mean ± SD age: 5.2 ± 0.9 y; 47% girls) who were habitual consumers of whole-fat dairy, then randomly assigned them in a double-blind fashion to remain on whole-fat dairy or switch their dairy consumption to reduced-fat products for 3 mo. Primary endpoints included measures of adiposity, body composition, blood pressure, fasting serum lipids, blood glucose, glycated hemoglobin (HbA1c), and C-reactive protein (CRP) and were assessed at baseline and study end. Pre- and postintervention results were compared using linear mixed models, adjusted for growth, age, and sex. Results Dairy fat intake was reduced by an adjusted (mean ± SEM) 12.9 ± 4.1 g/d in the reduced-fat compared with the whole-fat dairy group (95% CI: –21.2, –4.6 g/d; P = 0.003), whereas dietary energy intakes remained similar (P = 0.936). We found no significant differential changes between dairy groups in any measure of adiposity, body composition, blood pressure, or fasting serum lipids, glucose, HbA1c, and CRP. Conclusions Our results suggest that although changing from whole-fat to reduced-fat dairy products does reduce dairy fat intake, it does not result in changes to markers of adiposity or cardiometabolic disease risk in healthy children
    • 

    corecore